
Automated Customization of Cardiac Electrophysiology Models to Facilitate
Patient-Specific Modeling

Darby I Cairns1*, Maxfield R Comstock1*, Flavio H Fenton2, Elizabeth M Cherry1

1School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA,
USA

2School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
*Both authors contributed equally to this work

Abstract

Models of cardiac electrophysiology can be useful for
assessing the behavior of the heart when subjected to in-
terventions like pacing, defibrillation, or drugs. However,
for patient-specific predictions, models must be customized
to match the electrophysiological properties of individu-
als. We present a browser-based tool for customizing mod-
els of cardiac action potentials by fitting parameter values
to user-provided datasets. The tool uses a particle swarm
optimization algorithm accelerated by the user’s graphics
card, which can support a large particle population and
typically finds a low-error solution within a small number
of iterations (10–32), computed within seconds. The inter-
face allows all model parameters or a user-specified subset
to be selected for fitting, and the user can set bounds for all
parameters to constrain their values. We demonstrate the
effectiveness of this tool by creating parameterizations of
a four-variable human ventricular model to match human
cardiac action potential data taken from tissue exhibiting
Brugada syndrome. We expect this tool will be useful for
tuning models to match data recorded from individual ex-
periments and patients under normal and diseased condi-
tions.

1. Introduction

The electrical dynamics of cardiac tissue vary based
on tissue type, even across different regions of the same
heart. Different patients’ hearts will have distinct dynam-
ics; medication can also affect this behavior. When apply-
ing models of cardiac action potentials (APs), it is neces-
sary to tune them to best fit the data of interest by adjust-
ing the model parameter values. Finding such parameter
sets is a difficult nonlinear optimization problem, as the
search space may have a large number of local extrema.
For patient-specific AP models to be useful in a clinical
setting, any method for generating such a parameterization

must be fast, flexible, and easy to use.
Methods such as particle swarm optimization (PSO) and

genetic algorithms have been used to solve similar nonlin-
ear optimization problems [1, 2]. However, these methods
are computationally expensive and challenging to imple-
ment, requiring detailed knowledge of both the models be-
ing parameterized and the optimization algorithms. The
aim of our work is to provide a tool that uses the PSO al-
gorithm to find parameterizations of cardiac AP models to
fit membrane potential timeseries data. Toward this end,
we present a browser-based tool that can be run on vir-
tually any modern computer, with an interface allowing
for quick and simple control of the algorithm’s behavior.
Our implementation automatically takes advantage of any
available graphics hardware to parallelize the algorithm,
resulting in accurate results in a matter of seconds even on
consumer-grade laptops.

2. Methods

2.1. Data

We generated cardiac AP model parameterizations to fit
human tissue data obtained from optical mapping of ex-
planted human hearts. Individual positions in the optical
mapping data were used to produce timeseries data for a
single point. The tissue demonstrated hallmarks of Bru-
gada syndrome, a genetic disorder characterized by abnor-
mally long APs with characteristic shapes that can induce
ventricular arrhythmias.

2.2. Model

For the present study, the PSO algorithm is used with
a four-variable human ventricular model adapted for Bru-
gada syndrome [3]. Of the 39 model parameters, we fit be-
tween 20 and 23 using PSO, with the remainder set from
published model parameterizations. The pacing stimulus

Computing in Cardiology 2023; Vol 50 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2023.423



for the model uses a biphasic current that reflects the ef-
fect of voltage diffusion between cells in cardiac tissue,
which leads to better approximations of tissue behavior
while retaining the computational advantages of a single-
cell model.

2.3. Particle Swarm Optimization

Particle swarm optimization is a derivative-free opti-
mization method that makes no assumptions about the
problem it is optimizing. The algorithm functions by main-
taining a pool of candidate solutions, referred to as parti-
cles, and iteratively choosing parameter sets that produce
output more consistent with the data until an error thresh-
old has been met or a maximum number of iterations has
been reached. In our application, the position, p⃗i, of par-
ticle i is a vector containing candidate values for each pa-
rameter being fit. Each particle also has an associated ve-
locity v⃗i, which is used to update its position during each
iteration. Initially, the positions are drawn from a uni-
form random distribution defined by the bounds specified
for each parameter, with random velocities as well. Each
particle tracks the best (lowest error) set of parameters it
has found during execution, b⃗i, and has knowledge of the
global best achieved by any particle, b⃗g .

The position and velocity of each particle are updated
according to the formulae

v⃗i ← χ

[
v⃗i + U⃗(0, ϕ1)⊗

(⃗
bi − p⃗i

)
+ U⃗(0, ϕ2)⊗

(⃗
bg − p⃗i

)]
,

(1)

p⃗i ← p⃗i + v⃗i, (2)

where constriction coefficient χ is a parameter described
in Ref. [4] and U⃗(a, b) is a vector of uniformly distributed
random numbers in the range [a, b). The symbol⊗ denotes
component-wise multiplication. Each parameter value is
restricted to a range, and if a particle contains any pa-
rameter outside its range, that value is reset to a ran-
domly selected value in the nearest three-quarters of the
range. As in Ref. [1], we chose ϕ1 = ϕ2 = 2.05 and
χ = 2/(ϕ− 2 +

√
ϕ2 − 4ϕ) ≈ 0.73 as the default values

for our PSO implementation, with ϕ = ϕ1 + ϕ2.
For each particle, the model is run and the output is com-

pared with the input data, with the sum of squared error
used to quantify error for a given parameterization. As
many aspects of the algorithm are randomized, the result
of a particular run is not deterministic.

2.4. Software Interface

We implemented the PSO algorithm as a static web page
(see Figure 1), which allows for an interactive user inter-

Figure 1. Interface of the PSO tool with representative
Brugada fitting.

face and GPU-accelerated parallelism using the WebGL
API for JavaScript. The particle swarm optimization algo-
rithm is well-suited to parallelization, as the update steps
for each particle in a given iteration are independent. Other
steps, such as computing the global best particle position,
can take limited advantage of parallelism. Because the
most significant computational requirement for the algo-
rithm is the solution of the model for every particle at every
iteration in order to evaluate the quality of each particle po-
sition, the update step where parallelism is easiest to apply
is also the most relevant source of speedup.

The PSO interface consists of several components, as
shown in Figure 1. Buttons at the top of the page are used
to initiate PSO runs and to save the results. The upper-left
part of the page contains a plot that compares the fit found
by PSO to the provided data. On the right is a section that
allows the user to select a model and set parameter bounds,
as well as to identify parameters not to be fit and their val-
ues. Once a fit is complete, the resulting parameterization
is displayed here as well. Below, input data to the PSO
algorithm for fitting the model is specified. Aside from
normalization, most pre-processing of the data should oc-
cur before it is provided as an input to PSO. For instance,
high-resolution data should be downsampled to a sample

Page 2



0 250 500 750 1000

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u

Tissue

Model

Figure 2. Fitting to a human ventricular AP with
saddleback-type Brugada morphology.

rate of 1ms or higher to reduce the memory consumed by
the algorithm. The bottom of the page includes controls for
the PSO hyperparameters, such as the number of particles
and number of iterations.

As the WebGL API is supported in all modern web
browsers, this software can be accessed either by visiting
a website hosting the code or by downloading the files and
running them as a local web server. No compilation or in-
stallation is required for the program to run. The user inter-
face provides full access to the program’s features without
the need to modify any of the existing code.

3. Results

To test the effectiveness of the PSO algorithm, we use
it to fit data taken from optical-mapping experiments on
human cardiac tissue. In all cases, we fit a single action
potential paced at a period of 1 s, recorded with a sam-
ple interval of 1ms. All data is normalized by the PSO
algorithm, with the maximum value chosen manually to
produce the best fit. The PSO algorithm uses 32 iterations
with 1024 particles in all cases.

We find that the PSO algorithm is able to fit the model
to a variety of different action potential morphologies. Fig-
ure 2 shows a parameterization of the model targeting one
of the Brugada datasets that features a saddleback AP mor-
phology. In Figure 3, PSO was able to fit a more coved-
type Brugada morphology from a different region of tis-
sue, while fitting an additional two parameters compared
to Figure 2. Figure 4 shows a third example of an action

0 250 500 750 1000

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

u

Tissue

Model

Figure 3. Fitting to a human ventricular AP with coved-
type Brugada morphology.

potential with a more normal shape taken from the same
tissue, fitting an additional parameter when compared to
Figure 3, for a total of 23 parameters being fit. All three
action potential fittings closely capture the shapes of the
underlying datasets.

The speed of the PSO software enables rapid results,
making it easier to find good fittings quickly, and also fa-
cilitating the use of expert knowledge by tuning individual
parameters and seeing the results in seconds. When run on
a machine with an AMD Ryzen Threadripper 3960X pro-
cessor and NVidia GeForce RTX 2080 Ti GPU, our soft-
ware took less than two seconds to run 32 iterations with
1024 particles. Increasing the number of particles to 4096
did not change this result due to the extreme parallelism
provided by the GPU. Increasing the number of iterations
to 128 brought the running time up to just under six sec-
onds. When tested on a laptop without a dedicated GPU,
results still were obtained in less than a minute.

4. Discussion

Our implementation of the PSO algorithm is able to
find parameterizations of a four-variable ventricular model
that fit data taken from human tissue exhibiting Brugada
syndrome. Despite the large parameter space and chal-
lenging nature of the optimization problem, solutions are
found within seconds, and running the software does not
require detailed knowledge of the model, implementation,
or source code. Our software has the potential to facili-
tate using these models for patient-specific predictions in

Page 3



0 250 500 750 1000

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

u

Tissue

Model

Figure 4. Fitting to a human ventricular AP with a normal
morphology.

a clinical setting. In particular, our tool can be helpful
for users with relatively little knowledge of the model dy-
namics and effects of individual parameters, but also pro-
vides experts the ability to hand-tune parameter values and
bounds to constrain the solution.

Our PSO implementation has several limitations. In
many cases, adjusting the normalization factor for the data
can significantly improve the results of model fitting, but
this procedure is not automated. This restriction is miti-
gated by the inclusion of an input field for the normaliza-
tion value on the user interface. Another limitation occurs
because individual PSO runs are not deterministic, so that
re-running the algorithm will produce results that may dif-
fer in quality. Because each run is very fast, running PSO
several times and choosing the best result may be the most
pragmatic approach. In some cases, the PSO algorithm
may overfit to the given data, resulting in a parameteri-
zation that leads to undesirable behavior. In these cases,
imposing additional constraints on the parameter bounds
may help alleviate the problem. A detailed study of the
PSO hyperparameters and their effect on the behavior of
the algorithm is necessary to ensure that the algorithm is
exploited to its maximum potential. However, even with
potentially suboptimal parameters, the current implemen-
tation produces useful results in the cases we tested.

In the future, use of a tissue simulation on a small do-
main may be considered to include the effects of diffusion,
although our use of a biphasic stimulus mitigates some ef-
fects of single cells. However, such a change would in-
crease the computational cost of the algorithm. The per-

formance of other models, particularly those with larger
numbers of parameters, still needs to be evaluated. In par-
ticular, as the number of parameters becomes large, the
PSO algorithm may become inadequate to search the en-
tire solution space, and other methods of constraining the
parameters may become necessary. A possible way to im-
prove upon the results from the PSO algorithm would be to
use a second optimization method to find a local optimum
near the solution provided by PSO, as in Ref. [1]. Another
possible extension of this work would be to consider other
types of cardiac data that do not give detailed knowledge
of the action potential shape at a high time resolution. For
example, iterative models of cardiac action potential dura-
tion could potentially be fit to much sparser data [5]. Even
in the case of fitting continuous AP models, fits could pos-
sibly be improved by incorporating metrics in addition to
the sum of squared error, such as action potential duration.

Acknowledgments

We acknowledge support for this study from NSF grants
CMMI-2011280 and CNS-2028677 and from NIH grants
T32GM142616 and 1R01HL143450.

References

[1] Loewe A, Wilhelms M, Schmid J, Krause MJ, Fischer F,
Thomas D, Scholz EP, Dössel O, Seemann G. Parameter
estimation of ion current formulations requires hybrid opti-
mization approach to be both accurate and reliable. Frontiers
in Bioengineering and Biotechnology 2016;3:209.

[2] Cairns DI, Fenton FH, Cherry E. Efficient parameterization
of cardiac action potential models using a genetic algorithm.
Chaos 2017;27(9).

[3] Bueno-Orovio A, Cherry EM, Evans SJ, Fenton FH, et al.
Basis for the induction of tissue-level phase-2 reentry as a
repolarization disorder in the Brugada syndrome. BioMed
Research International 2015;2015.

[4] Clerc M, Kennedy J. The particle swarm - explosion,
stability, and convergence in a multidimensional complex
space. IEEE Transactions on Evolutionary Computation
2002;6(1):58–73.

[5] Qu Z, Shiferaw Y, Weiss JN. Nonlinear dynamics of car-
diac excitation-contraction coupling: an iterated map study.
Physical Review E 2007;75(1):011927.

Address for correspondence:

Elizabeth M. Cherry
School of Computational Science and Engineering
Georgia Institute of Technology
756 West Peachtree Street Northwest
Atlanta GA 30332-4017
elizabeth.cherry@gatech.edu

Page 4


	Introduction
	Methods
	Data
	Model
	Particle Swarm Optimization
	Software Interface

	Results
	Discussion

